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Required Packages

library(palmerpenguins)
library(ggplot2)

theme_set(theme_bw())
theme_replace(panel.grid.minor = element_blank(),

panel.grid.major = element_blank())

Introduction to Simple Linear Regression

Simple linear regression is a statistical method which allows us to predict a quantitative out-
come 𝑦 on the basis of a single predictor variable 𝑥.

• Sometimes 𝑥 is regarded as the predictor, explanatory, or independent variable.

• Similarly, 𝑦 is regarded as the response, outcome, or dependent variable
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We will only use predictor and response to denote our variables of interest. The goal is to
define a statistical model that defines the response variable (y) as a function of the predictor
(x) variable. Once, we built a statistically significant model, it’s possible to use it for predicting
outcomes on the basis of new predictor values.

Below are all the numerical variables in our dataset

colnames(Filter(is.numeric,penguins))

[1] "bill_length_mm" "bill_depth_mm" "flipper_length_mm"
[4] "body_mass_g" "year"

For our simple linear regression model, we will consider the body mass (grams) of the penguins
as the response variable and the length of the length of the the penguin’s flipper (millimeters)
as our single predictor variable

Our model takes the form

(𝑏𝑜𝑑𝑦_𝑚𝑎𝑠𝑠𝑔) = 𝛽0 + 𝛽1 ⋅ (𝑓𝑙𝑖𝑝𝑝𝑒𝑟_𝑙𝑒𝑛𝑔𝑡ℎ𝑚𝑚) + 𝜖
where

• 𝛽0 is the intercept of the regression line, (when flipper_length_mm =0)
• 𝛽1 is the slope of the regression line
• 𝜖 is the error terms

For simplicity we will remove any missing data from our variables of interest

missing_dat <- is.na(penguins$flipper_length_mm)|is.na(penguins$body_mass_g)

penguins_dat will be the dataset without missing values for the flipper_length_mm and
body_mass_g variables

penguins_dat <- subset(penguins,!missing_dat)

For syntax purposes, we create variables for flipper_length_mm and body_mass_g to avoid
using penguins_dat$ throughout the tutorial

flipper_length_mm <- penguins_dat$flipper_length_mm
body_mass_g <- penguins_dat$body_mass_g

We can view the relationship between body_mass_g and flipper_length_mm using a scatter
plot

2



plot(flipper_length_mm,body_mass_g,
xlab = 'Flipper length (mm)',
ylab = 'Body mass (grams)')
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SLR in R

simple_lm <- lm(body_mass_g ~ flipper_length_mm)
simple_lm

Call:
lm(formula = body_mass_g ~ flipper_length_mm)

Coefficients:
(Intercept) flipper_length_mm

-5780.83 49.69

The model can be written as body_mass_g = -5780.83 + 49.69*flipper_length_mm, this
is our line of best fit. We can then plot our line of best fit as shown below

plot(flipper_length_mm,body_mass_g,
xlab = 'Flipper length (mm)',
ylab = 'Body mass (grams)')

abline(simple_lm,col = 'red',lwd =2)
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Moreover, we can use the summary() function to quickly check whether our predictor is signif-
icantly associated with the response variable. If so, we can further assess how well our model
fits our actual data by utilizing metrics provided by the summary output

Model Summary

lm_summary <- summary(simple_lm)
lm_summary

Call:
lm(formula = body_mass_g ~ flipper_length_mm)

Residuals:
Min 1Q Median 3Q Max

-1058.80 -259.27 -26.88 247.33 1288.69

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5780.831 305.815 -18.90 <2e-16 ***
flipper_length_mm 49.686 1.518 32.72 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 394.3 on 340 degrees of freedom
Multiple R-squared: 0.759, Adjusted R-squared: 0.7583
F-statistic: 1071 on 1 and 340 DF, p-value: < 2.2e-16
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The ’*’ symbols indicate the level of significance for the respective term. The significance codes
below the line shows the definitions for the level of significance; one star means 0.01 < 𝑝 < 0.05,
two stars mean 0.001 < 𝑝 < 0.01, and similar interpretations for the remaining symbols

Breaking down the summary output, it contains the following components (Extract using $
operator)

Call

The function (formula) used to compute the regression model

lm_summary$call

lm(formula = body_mass_g ~ flipper_length_mm)

Residuals

The difference between predicted values for the response variable using our constructed model
and the observed response values from our original data. Mathematically,

𝑟𝑖 = 𝑦𝑖 − ̂𝑦𝑖

If the residual is

• Positive: The predicted value was an underestimate of the observed response
• Negative: The predicted value was an overestimate of the observed response
• Zero: The predicted value is exactly the same as the observed response

Show Code

dat <- cbind.data.frame(flipper_length_mm,body_mass_g)

p1 <- ggplot(dat, aes(x = flipper_length_mm, y = body_mass_g)) +
geom_smooth(method = "lm", se = FALSE,

color = "lightgrey",formula = 'y~x') +
geom_segment(aes(xend = flipper_length_mm,

yend = predict(simple_lm)), alpha = .2) +
geom_point(aes(color=residuals(simple_lm))) +
guides(color = 'none') +
scale_color_gradient2(low = "blue", mid = "white", high = "red") +
labs(x = 'Flipper length (mm)',
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y = 'Body mass (grams)')+
theme_bw()+
theme(panel.grid.minor = element_blank(),

panel.grid.major = element_blank())

3000

4000

5000

6000

170 180 190 200 210 220 230
Flipper length (mm)

B
od

y 
m

as
s 

(g
ra

m
s)

The figure above shows the magnitude of the resulting residuals from our fitted model. The
darker the red points the more positive the residuals were, the darker the blue points the more
negative the residuals were.

Assuming our line is the “line of best fit” the sum of the residuals always equals zero

sum(lm_summary$residuals)

[1] 6.878054e-12

A few plots of the residuals to assess our regression assumptions:

Residuals vs fitted values plot is used to detect non-linearity, unequal error variances, and
possible outliers

The residuals should form a “horizontal band” around the y=0 line, suggesting the assumption
that the relationship is linear is reasonable as well that the variances of the error terms are
equal
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plot(fitted(simple_lm),simple_lm$residuals,
xlab = 'Fitted values',
ylab = 'Residuals',
main = 'Residuals vs Fitted Values')

abline(a = 0, b = 0, col = 'red', lwd = 2)
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The following histogram of residuals suggests the residuals (and hence the error terms) are
normally distributed

Show Code

lm_residuals <- simple_lm$residuals
h <- hist(lm_residuals,

main = 'Distribution of Residuals',
xlab = 'Residuals')

xfit <- seq(min(lm_residuals), max(lm_residuals), length = 40)
yfit <- dnorm(xfit, mean = mean(lm_residuals), sd = sd(lm_residuals))
yfit <- yfit * diff(h$mids[1:2]) * length(lm_residuals)
lines(xfit, yfit, col = "red", lwd = 2)
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A more commonly used plot to test the normality of our residuals, is using a so-called Q-Q
plot

qqnorm(simple_lm$residuals)
qqline(simple_lm$residuals)
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To determine normality, if the residuals in the plot fall along the plotted line, then the data is
normally distributed
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Coefficients

Estimated regression beta coefficients ( ̂𝛽0, ̂𝛽1), alongside their standard errors, 𝑡-test, and 𝑝-
values.

lm_summary$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -5780.83136 305.814504 -18.90306 5.587301e-55
flipper_length_mm 49.68557 1.518404 32.72223 4.370681e-107

From the output above:

• the model can be written as body_mass_g = -5780.831 + 49.686*flipper_length_mm

• the intercept 𝛽0 is -5780.831. It can be interpreted as the predicted body mass in grams
for a flipper length of zero millimeters. In most scenarios the interpretation of the
intercept coefficient will not make sense. For example, when the length of the flipper is
zero millimeters we predict the weight of the penguin will be about -5780 grams

• the regression beta coefficient for the variable flipper_length_mm 𝛽1 is 49.686. That is,
for each additional millimeter of the flipper we expect the penguin to gain 49.686 grams
of body mass. For example, if the length of the flipper is 200 millimeters then we expect
the penguin’s body mass to be about -5780.831 + 49.686 *200 = 4156.369 grams

Model Performance

Residual standard error (RSE), R-squared, Adjusted R-squared, and the F-statistic are metrics
used to check our model performance. That is, how well does our model fit the data.

metrics <- c(lm_summary$sigma,lm_summary$r.squared,
lm_summary$adj.r.squared,
lm_summary$fstatistic['value'])

names(metrics) <- c('RSE','R_squared','Adj_R_squared','F_statistic')

metrics

RSE R_squared Adj_R_squared F_statistic
394.2781775 0.7589925 0.7582837 1070.7445922

9



Residual standard error

The average variation of the observations points around the fitted regression line. This is the
standard deviation of residual errors The closer to this value is to zero the better.

R-squared/Adjusted R-squared

The proportion of information (i.e. variation) in the data that can be explained by the model.
The adjusted R-squared adjusts for the degrees of freedom. The higher these values are the
better.

In the simple linear regression setting R-squared is the square of the Pearson correlation
coefficient

cor(flipper_length_mm,body_mass_g)^2

[1] 0.7589925

F-statistic

The F-statistic gives the overall significance of the model. It assess whether at least one
predictor variable has a non-zero coefficient. The higher this value the better. However, this
test only becomes more important when dealing with multiple predictors instead of a single
predictor found in a simple linear regression.

Test of Significance for the Slope

The equation of the least squares regression line is given by

𝑦 = 𝛽0 + 𝛽1𝑥

where 𝛽0 and 𝛽1 minimize the sum of squared residuals

When the coefficients are estimated from data, we write the linear model as

̂𝑦 = ̂𝛽0 + ̂𝛽1𝑥

Hence, a straightforward linear model encapsulates the linear correlation between two variables
through two key summary statistics, namely ̂𝛽0 and ̂𝛽1. Specifically, ̂𝛽0 serves as an estimate
for the intercept, while ̂𝛽1 provides an estimate for the slope of the linear model. The ‘hat’
symbols are employed when fitting the model to the data, often referred to as the “fitted
model,” and ̂𝑦 represents the “fitted” or “predicted” values of the response variable
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The primary objective in simple linear regression is often to understand the relationship be-
tween the independent variable and the dependent variable. The slope of the regression line
represents the change in the dependent variable for a one-unit change in the independent vari-
able. Therefore, testing the significance of the slope helps determine if there is a statistically
significant linear relationship

𝐻0 ∶ 𝛽1 = 0 (1)
𝐻𝑎 ∶ 𝛽1 ≠ 0 (2)

Theory-based approach

A simple summary(lm()) call will perform a theory based approach for testing the statistical
significance of the slope coefficient

simple_lm <- lm(body_mass_g ~ flipper_length_mm)

summary(simple_lm)

Call:
lm(formula = body_mass_g ~ flipper_length_mm)

Residuals:
Min 1Q Median 3Q Max

-1058.80 -259.27 -26.88 247.33 1288.69

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5780.831 305.815 -18.90 <2e-16 ***
flipper_length_mm 49.686 1.518 32.72 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 394.3 on 340 degrees of freedom
Multiple R-squared: 0.759, Adjusted R-squared: 0.7583
F-statistic: 1071 on 1 and 340 DF, p-value: < 2.2e-16

Refer to SLR in R, for a more detailed explanation of the above output
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Simulation-based approach

Below is a for loop that will simulate the null distribution for the slope of the regression line

iters <- 1000
slopes <- numeric(iters)
set.seed(123)

for (i in 1:iters){
flipperlength_shuffle_i <- sample(penguins_dat$flipper_length_mm)

fit_i <- lm(body_mass_g ~ flipperlength_shuffle_i, data = penguins_dat)
slopes[i] <- fit_i$coefficients[2]

}

Show Code

sampling_dist <- ggplot(data.frame(slopes),
aes(slopes))+

geom_histogram(fill = 'steelblue',alpha = 0.3,
color = 'black',bins=30)+

labs(title = 'Sampling distribution',
subtitle = '',
x = 'Slope Coefficients',y = '')
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The 𝑝-value will be the proportion of times that the absolute value of the permuted statistics
is greater than the absolute value of the observed statistic

obs_slope <- simple_lm$coefficients['flipper_length_mm']

mean(abs(slopes) >= abs(obs_slope))

[1] 0

The 𝑝-value is essentially zero, we have strong evidence to suggest the coefficient of the slope
term is non-zero. That is, there is a statistically significant linear association between flipper
length and the body mass of the penguins
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