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library(ggplot2)
library(patchwork)
library(palmerpenguins)

theme_set(theme_bw())
theme_replace(panel.grid.minor = element_blank(),

panel.grid.major = element_blank())

Sampling Distributions

Sample mean

The sampling distribution of the sample mean is the theoretical distribution of means that
would result from taking all possible samples of size 𝑛 from the population.

Suppose we are sampling from a population which comes from a standard Normal distribution
such that observations in our sample are iid (independent, identically distributed). Each sample
of size 𝑛 will then consists of realizations {𝑥1, … , 𝑥𝑛}, such that each 𝑥𝑖 will be a realization
of the random variable 𝑋𝑖 ∼ 𝑁(0, 1)
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To obtain the sampling distribution for the sample mean,

For the total number of samples do the following:

(1) Generate a random sample of size 𝑛 from the population
(2) Compute the sample mean and store the result in a variable, say sample_means
(3) Plot each of the sample_means using a histogram

n_samples <- 10000
sample_size <- 100 # each sample will be of size 100
sample_means <- numeric(n_samples)

for(i in 1:n_samples){
sample_i = rnorm(n = sample_size, mean = 0, sd=1) # generate a new sample
sample_means[i] = mean(sample_i) # obtain mean for each sample

}

Show Code

sampling_dist <- ggplot(data.frame(sample_means),aes(sample_means))+
geom_histogram(fill = 'steelblue',alpha = 0.3,

color = 'black',bins=30)+
labs(title = 'Sampling distribution',

x = 'Sample means',y = '')

2



0

250

500

750

1000

−0.2 0.0 0.2 0.4
Sample means

Sampling distribution

The plot above is the distribution of sample means after taking 10,000 samples with size
𝑛 = 100 from the population. The overall distribution appears to be normally distributed
(bell shaped curve).

The Central Limit Theorem (CLT) states that if you have a population with mean 𝜇
and standard deviation 𝜎 and take sufficiently large random samples from the population
with replacement, then the distribution of the sample means (sampling distribution) will be
approximately normally distributed with mean 𝜇 and standard error 𝜎√𝑛 . Note, the standard
deviation of the sampling distribution of the sample mean (or any other statistic) is referred
to as the standard error.

Recall, the population is distributed as a standard normal distribution, i.e 𝑁(𝜇 = 0, 𝜎 = 1)

mean(sample_means)

#> [1] 8.423449e-05

which is very close to the population mean of 𝜇 = 0
with standard error
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sd(sample_means)

#> [1] 0.1005651

which is approximately 𝜎√𝑛 = 1
10

Below is a demonstration of how increasing the sample size affects the distribution of the
sample mean and seeing CLT in action

Show Code

generate_sampling_distribution <- function(n_samples, mean = 0, sd = 1,
color = 'black', fill = 'steelblue',
alpha = 0.3, bins=30) {

sample_means <- numeric(n_samples)

for(i in 1:n_samples){
sample_i = rnorm(n = n_samples, mean = mean, sd=sd) # generate a new sample
sample_means[i] = mean(sample_i) # obtain mean for each sample

}

sample_mean <- round(mean(sample_means),3)
standard_error <- round(sd(sample_means),3)

sampling_dist <- ggplot(data.frame(sample_means,n_samples),aes(sample_means))+
geom_histogram(fill = fill,alpha = alpha,

color = color,bins=bins)+
labs(title = 'Sampling distribution',

x = 'Sample means',y = '',
subtitle = paste0('mean=',sample_mean,

', standard error=',standard_error))
return(sampling_dist+facet_grid(~n_samples))

}

plots <- generate_sampling_distribution(100)+
generate_sampling_distribution(1000)+
generate_sampling_distribution(5000)+
generate_sampling_distribution(10000)+
plot_layout(nrow = 2, ncol = 2)
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To interactively visualize how the sampling distribution of the sample mean builds up one
sample at a time and see when the Central Limit Theorem start to kick in, I highly recommend
the art of stats sampling distributions and Central Limit Theorem web applications.

Application: Sample Mean

Now we will apply the the concepts of generating a sampling distribution for the sample
mean using a real world dataset. In particular, we will use the penguins dataset from the
palmerpenguins package.

Using the penguins dataset we will generate a sampling distribution for the sample mean of
the penguins’ body mass (grams)

For simplicity, we will remove any missing observations
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body_mass_g <- penguins$body_mass_g[!is.na(penguins$body_mass_g)]

Recall, to obtain the sampling distribution for the sample mean, do the following process

For the total number of samples do the following:

(1) Generate a random sample of size 𝑛 from the population, penguins$body_mass_g
(2) Compute the sample mean of the penguins body mass and store the result in a variable,

say body_mass_xbar
(3) Plot each of the body_mass_xbar using a histogram

n_samples <- 10000
sample_size <- 50

body_mass_xbar <- numeric(n_samples)

for(i in 1:n_samples){
sample_i = sample(body_mass_g, size = sample_size) # generate a new sample
body_mass_xbar[i] = mean(sample_i) # obtain mean for each sample

}

Show Code

sampling_dist <- ggplot(data.frame(body_mass_xbar),
aes(body_mass_xbar))+

geom_histogram(fill = 'steelblue',alpha = 0.3,
color = 'black',bins=30)+

labs(title = 'Sampling distribution of Sample Mean',
subtitle = 'Penguins body mass (grams)',
x = 'Sample means',y = '')
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The mean for the sampling distribution is

mean(body_mass_xbar)

#> [1] 4200.419

which is approximately the population mean for the penguins body mass (without missing
observations)

mean(body_mass_g)

#> [1] 4201.754

the standard error for the sampling distribution is

sd(body_mass_xbar)

#> [1] 104.3714
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Sample proportions

The idea behind generating a sampling distribution for sample proportions is very similar to
the procedure described in Sample means section.

To obtain the sampling distribution for the sample proportions;

For the total number of samples do the following:

(1) Generate a random sample of size 𝑛 from the population
(2) Compute the sample proportion and store the result in a variable, say sample_proportions
(3) Plot each of the sample_proportions using a histogram

Here the sample proportion is the fraction of samples which were success. We will take a large
number of random samples from the population, where the population is generated from a
binomial distribution with 10 trials and probability of success 𝑝 = 0.25 for each trial.

n_samples <- 10000
sample_size <- 100 # each sample will be of size 100
n_trials <- 10
sample_proportions <- numeric(n_samples)

for(i in 1:n_samples){
sample_i = rbinom(n = sample_size, size= n_trials,

prob = 0.25) # generate a new sample
sample_proportions[i] = mean(sample_i)/n_trials # obtain proportion for each sample

}

Show Code

sampling_dist_prop <- ggplot(data.frame(sample_proportions),
aes(sample_proportions))+

geom_histogram(fill = 'steelblue',alpha = 0.3,
color = 'black',bins=30)+

labs(title = 'Sampling distribution',
x = 'Sample proportions',y = '')
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The plot above is the distribution of sample proportions after taking 10,000 samples with size
𝑛 = 100 from the population. The overall distribution appears to be normally distributed (bell
shaped curve).

Through the CLT, the sampling distribution for the sample proportions will be distributed
with mean 𝑝 and standard error √𝑝(1−𝑝)

𝑛 , ̂𝑝 ∼ 𝑁(𝑝, √𝑝(1−𝑝)
𝑛 )

mean(sample_proportions)

#> [1] 0.250013

which is approximately the population parameter 𝑝 = 0.25.

The standard error is

sd(sample_proportions)

#> [1] 0.01374356
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Application: Sample proportion

Using the penguins dataset we will generate a sampling distribution for the sample proportion
of the Adelie penguins

For simplicity, we will remove any missing observations

species <- penguins$species[!is.na(penguins$species)]

Recall, to obtain the sampling distribution for the sample proportion

For the total number of samples do the following:

(1) Generate a random sample of size 𝑛 from the population, penguins$species (without
missing observations)

(2) Compute the sample proportion of the penguins Adelie species and store the result in a
variable, say adelie_proportions

(3) Plot each of the adelie_proportions using a histogram

n_samples <- 10000
sample_size <- 50

adelie_proportions <- numeric(n_samples)

for(i in 1:n_samples){
sample_i = sample(species, size = sample_size) # generate a new sample from the population
adelie_proportions[i] = mean(sample_i == 'Adelie') # obtain proportion for each sample

}

Show Code

sampling_dist <- ggplot(data.frame(adelie_proportions),
aes(adelie_proportions))+

geom_bar(fill = 'steelblue',alpha = 0.3,
color = 'black')+

labs(title = 'Sampling distribution of Sample Proportion',
subtitle = "Adelie penguins",
x = 'Sample proportions',y = '')
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The mean for the sampling distribution is

mean(adelie_proportions)

#> [1] 0.441562

which is approximately the population proportion for the Adelie penguins (without missing
observations)

prop.table(table(species))['Adelie']

#> Adelie
#> 0.4418605

the standard error for the sampling distribution is

sd(adelie_proportions)

#> [1] 0.06456762
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which should approximately be √𝑝(1−𝑝)
𝑛

p <- prop.table(table(species))['Adelie']
sqrt((p*(1-p))/sample_size)

#> Adelie
#> 0.07023102
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