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library(ggplot2)
library(patchwork)

theme_set (theme_bw())

theme_replace(panel.grid.minor =
panel.grid.major =

element_blank(),
element blank())

Normal Distribution

One of the most important and widely used continuous distribution is the Normal distribution,

or Gaussian distribution.

Let X ~ N(u,0) be a random variable following a normal distribution with mean p and
standard deviation o. In R, the following functions described in the table below, allows us to
summarize the function relating to the normal distribution



Function Description

dnorm Normal density
(Probability Density Function)
pnorm Normal distribution
(Cumulative Distribution Function)
qnorm Quantile function of the Normal distribution
rnorm Normal random number generation

By default, all of the functions above consider the standard Normal distribution, which has a
mean of zero and a standard deviation of one, X ~ N(0,1)

dnorm
The density function for a normal distribution with mean p and standard deviation o is
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We can use dnorm() function to calculate the density function, i.e f(x), for a grid of x values
from any normal distribution with mean p and standard deviation o

For example, we can calculate f(0) from a standard normal distribution

dnorm(x = O,mean = 0O,sd = 1)

#> [1] 0.3989423

Consider evaluating f(x) for x € [1,10] with mean 1 and standard deviation of 3

dnorm(x=1:10,mean = 1,sd = 3)

#> [1] 0.132980760 0.125794409 0.106482669 0.080656908 0.054670025 0.033159046
#> [7] 0.017996989 0.008740630 0.003798662 0.001477283



pnorm

The pnorm() function gives the Cumulative Distribution Function (CDF) of the Normal dis-
tribution, which is the probability that the variable X takes a value less than or equal to x.
Mathematically, F'y(z) = P(X < z).

For any continuous distribution P(X = z) = 0, so equivalently the CDF is P(X < z) =
P(X < x).

Consider the standard normal distribution, since this distribution is symmetrical centered
around g = 0 then P(X < 0) = 0.5. We can verify this result using pnorm as follows

pnorm(0,mean = 0, sd = 1)

#> [1] 0.5

Example: Suppose X is the SAT-M score which has a normal distribution with a mean of
507 and standard deviation of 111. What is the probability of scoring less than 700 on the
SAT-M?

Show Code

probl <- round(pnorm(700, mean=507, sd=111) * 100,2)
pltl <- ggplot(data.frame(x = c(150,900)), aes(x)) +
stat_function(fun = dnorm,
geom = "line",

xlim = ¢(150,900),

args = list(mean = 507,sd = 111)) +
stat_function(fun = dnorm,

geom = "area",

fill = 'steelblue',

alpha =0.3,

xlim = c(150, 700),

args = list(mean = 507,sd = 111))+

annotate("text", x = 510, y = 0.0015,
label = pasteO(probi,'%'),
size = 8)+
geom_vline(xintercept = 700,linetype =2)+
labs(x = '',y= 'Density')
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That is P(X < 700),

pnorm (700, mean=507, sd=111)

#> [1] 0.9589596

What about the probability of scoring greater than 7007
Show Code

prob2 <- round(pnorm(700, mean=507, sd=111,
lower.tail = FALSE)*100,2)

p2 <- ggplot(data.frame(x = c(150,900)), aes(x)) +
stat_function(fun = dnorm,
geom = "line",

xlim = ¢(150,900),

args = list(mean = 507,sd = 111)) +
stat_function(fun = dnorm,

geom = "area",

fill = 'steelblue',

alpha =0.3,



c (700, 900),
args = list(mean = 507,sd = 111))+
annotate("text", x = 738, y = 0.00017,
label = pasteO(prob2,'%'),
size=4.7)+
geom_vline(xintercept = 700,linetype =2)+
labs(x = '',y= 'Density')
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We are interested P(X > 700), which can be obtained through P(X > 700) = 1 — P(X <
700)

1-pnorm(700, mean = 507, sd = 111)

#> [1] 0.04104036

Alternative, pnorm() has an argument lower.tail=TRUE (by default). If lower.tail=TRUE,
the probabilities P(X < x) are returned. Otherwise, if lower.tail=FALSE, P(X > z) are
returned



pnorm(700, mean = 507, sd = 111, lower.tail = FALSE)

#> [1] 0.04104036

The Empirical rule (also known as the 68-95-99.7 rule) is a statistical rule stating that for a
normal distribution, where most of the data will fall within three standard deviations of the
mean. The empirical rule can be broken down into three parts: 68% of data falls within the
first standard deviation from the mean (blue shaded region). 95% fall within the 2nd standard
deviations (up to the green shaded region). 99.7% fall within third standard deviation (up to
the red shaded region)

Show Code

x_limits <- c(-4,4)

plot_shaded_normal <- function(shade_limits,percent_display,
annotate_x_label,annotate_y_label,
x_limits = c(-4,4),
fill = 'steelblue',
alpha = 0.3,annotate_label_size=4.5){
plt <- ggplot(data.frame(x = x_limits), aes(x)) +

stat_function(fun = dnorm,geom = "line",xlim = x_limits) +

stat_function(fun = dnorm,geom = "area",fill = fill,alpha =alpha,
xlim = shade limits)+

labs(x = '',y= 'Density')+

annotate("text", x = annotate_x_label, y = annotate_y_label,
label = pasteO(percent_display,'%'),
size=annotate_label_size)+
scale_x_continuous(name = '',limits = x_limits,
breaks = x_limits[1]:x_limits[2])
return(plt)
+

plots <- plot_shaded_normal(shade_limits = c(-1,1),
percent_display = 68,
annotate_x_label = 0.1,annotate_y_label = 0.15)+
plot_shaded_normal (shade_limits = c(-2, 2),fill='green',
percent_display = 95,
annotate_x_label = 0,annotate_y_label = 0.15)+
plot_shaded_normal(shade_limits = c(-3, 3),fill='red',
percent_display = 99.7,



annotate_x_label = 0.1,annotate_y_label = 0.15)+
plot_annotation(title = '68-95-99.7 Rule')
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We can easily verify these results using pnorm. Assuming a standard Normal distribution if
we were one standard deviation away from the mean then

pnorm(1) -pnorm(-1)

#> [1] 0.6826895

If we were two standard deviations away from the mean

pnorm(2) - pnorm(-2)

#> [1] 0.9544997

and lastly, three standard deviations away from the mean



pnorm(3) - pnorm(-3)

#> [1] 0.9973002

gnorm

The function gnorm() returns the value of the inverse cumulative density function (CDF) of
the normal distribution with specified mean p and standard deviation o.

Let Fy(z) = P(X < z) be the CDF of the normal distribution, and suppose it returns the
probability p, i.e, Fy(x) = p. The inverse of the CDF or (quantile function) tells you what x
would make F'y(z) return some probability p;

Fx'(p) ==
For example, for the standard normal distribution Fx(0) = P(X < 0) = 0.5. That is, the

value of x or (quantile) which gives us a cumulative probability of 0.5 is = 0.

Therefore, we can use the qnorm() function to find out what value of x or (quantile) gives us a
a cumulative probability of p. Hence, the qnorm function is the inverse of the pnorm function

Show Code
x_limits <- c(-4,4)

pl <- ggplot(data.frame(x = x_limits), aes(x)) +
stat_function(fun = dnorm,
geom = "line",
xlim = x_limits) +
stat_function(fun = dnorm,

geom = "area",
fill = 'steelblue',
alpha =0.3,

xlim = c(-4, 0))+

geom_vline(xintercept = 0,linetype=2,color = '#cf5d55')+
labs(x = '',y= 'Density')+
annotate('text', x = -0.65, y = 0.17,

parse =TRUE,

label = pasteO(
expression('F'[x]),'(0)==0.5") )+
annotate('text',x = 0.77, y = 0.41,
parse =TRUE,



label = paste0(
expression('F' [x]~{-1}),"' *x(0.5)==0"),
color = '#cf5d55')+
scale_x_continuous(name = '',limits = x_limits,
breaks = -4:4)
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gnorm(p=0.5)

# [1]1 ©

Going back to our example of the SAT-M scores. Suppose X is the SAT-M score which has a
normal distribution with a mean of 507 and standard deviation of 111. Recall the probability
of obtaining a score less than 700 on the SAT-M was P(X < 700) = 0.9589596. Therefore, if
we were interesting in finding the score or (quantile) which gives us a cumulative probability
of roughly 96% we can use qnorm as follows:

gnorm(0.9589596, mean=507, sd=111)

#> [1]1 700

We should see that the output value is exactly 700.



rnorm

The rnorm function generates n observations from a Normal distribution with mean g and
standard deviation o.

We specify a seed for reproducibility,

set.seed(10)

Let’s start by generate 10 random observations from a standard normal distribution

rnorm(10, mean = 0, sd = 1)

#> [1] 0.01874617 -0.18425254 -1.37133055 -0.59916772 0.29454513 0.38979430
#> [7] -1.20807618 -0.36367602 -1.62667268 -0.25647839

or equivalently,

rnorm(10)

#> [1] 1.10177950 0.75578151 -0.23823356 0.98744470 0.74139013 0.08934727
#> [7] -0.95494386 -0.19515038 0.92552126 0.48297852

We can specify a different mean and standard deviation

rnorm(10, mean = 10, sd = 2)

#> [1] 8.807379 5.629426 8.650268 5.761878 7.469604 9.252677 8.624889 8.255682
#> [9] 9.796478 9.492439

In the following plot we generate n = 100, 1000, 10000 random observations from a standard
normal distribution. If we increase the number of observations, we see the data will approach
the true Normal density function

Show Code
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plot_random_normal <- function(n_samples, mean = 0, sd = 1,
fill = 'steelblue', alpha = 0.3,
bins = 30, density_linewidth = 1.2,
density_linetype = 2){

plt <- ggplot(data = data.frame(x=rnorm(n_samples,mean = mean, sd = sd),

n_samples) ,aes(x))+
geom_histogram(aes(y = after_stat(density)),
colour = 1, fill = fill,
alpha = alpha,
bins=bins) +
geom_density(linewidth = density_linewidth,
linetype = density_linetype,
colour = 2)+

labs(x= '',y = 'density')+
facet_grid(~n_samples)
return(plt)

}

plots <- plot_random_normal (n_samples = 100)+
plot_random_normal (n_samples = 1000)+
plot_random_normal (n_samples = 10000)+
plot_layout (ncol=3)
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Standardizing Values

The normal model N(0,1) is called the standard normal distribution, and it is the default
model used when working with (.)norm functions

A z-score, also known as a standard score, quantifies the number of standard deviations a
data point is from the mean of a distribution. This can be useful for comparing and analyzing
data across different scales or distributions, providing a standardized way to assess the relative
position of a particular value within a dataset

For example, consider a scenario where you are comparing the performance of students in two
different subjects, one with scores ranging from 0 to 100 and another with scores ranging from
0 to 50. Without standardization, it can be challenging to assess which student has performed
relatively better across both subjects.

The z-score of a particular value is defined as

value — mean

~ standard deviation

If the values in their original units of measurement follow a normal distribution, then the
z-scores will follow a standard normal distribution

12



Recall the SAT-M scores example: Suppose X is the SAT-M score which has a normal distri-
bution with a mean of 507 and standard deviation of 111. What is the probability of scoring
less than 700 on the SAT-M?

pnorm(700, mean = 507, sd = 111)

#> [1] 0.9589596

We can also compute this quantity with the z-score with respect to the standard normal
distribution

value — mean

Zz =
standard deviation

700 — 507
SRR TT] (2)

z = 1.738739 (3)

z <= (700-507)/111
pnorm(z)

#> [1] 0.9589596

Show Code

prob2 <- round(z * 100,2)
p2 <- ggplot(data.frame(x = c(-4,4)), aes(x)) +
stat_function(fun = dnorm,

geom = "line",

xlim = c(-4,4),

args = list(mean = O,sd = 1)) +
stat_function(fun = dnorm,

geom = "area",

fill = 'red',

alpha =0.3,

xlim = c(-4, z),

args = list(mean = O0,sd = 1))+
annotate("text", x = (510-507)/111, y = 0.15,

label = pasteO(probi,'%'),
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size = 8)+
geom_vline(xintercept = z,linetype =2)+
labs(x = '',y= 'Density"')
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By standardizing the scores, we shift from calculating P(X < 700) where the units are in
SAT-M scores to equivalently computing P(Z < 1.738739). This represents the number of
standard deviations a data point is from the mean of the distribution. By standardizing we
can now compare these results with say scores obtained from an english SAT exam on the
same scale
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